Học Tốt Lý thuyết phương trình quy về phương trình bậc nhất, bậc hai

07/04/2016 | 292 | Thanh Tâm | Toán 10

Lý thuyết phương trình quy về phương trình bậc nhất, bậc hai Giải và biện luận phương trình dạng ax + b = 0

ý thuyết phương trình quy về phương trình bậc nhất, bậc hai

Tóm tắt lý thuyết

1. Giải và biện luận phương trình dạng ax + b = 0 (1)

  • a≠ 0 : (1) có nghiệm duy nhất x = Học Tốt Lý thuyết phương trình quy về phương trình bậc nhất, bậc hai.
  • a = 0; b ≠ 0; (1) vô nghiệm.
  • a=0; b = 0: (1) nghiệm đúng với mọi x ∈ R.
  • Ghi chú: Phương trình ã + b = 0 với a ≠ 0 được gọi là phương trình bậc nhất một ẩn (x)

2. Phương trình bậc hai một ẩn ax2 + bx + c= 0 (a ≠ 0) (2) 

∆ = b2 -4ac được gọi là biệt thức của phương trình (2).

+ ∆ > 0 thì (2) có nghiệm phân biệt x1,2 Học Tốt Lý thuyết phương trình quy về phương trình bậc nhất, bậc hai

+ ∆ = 0 thì (2) có 2 nghiệm kép x = -Học Tốt Lý thuyết phương trình quy về phương trình bậc nhất, bậc hai.

+  ∆ < - thì (2) vô nghiệm.

3. Định lí Vi-ét

Nếu phương trình bậc hai ax2 + bx + c= 0 (a ≠ 0) có hai nghiệm x1,  x2 thì 

x+ xHọc Tốt Lý thuyết phương trình quy về phương trình bậc nhất, bậc hai,  x1x2=Học Tốt Lý thuyết phương trình quy về phương trình bậc nhất, bậc hai.

Đảo lại: Nếu hai số u và v có tổng u + v =S và tích u.v = P thì u, v là các nghiệm của phương trình: x2 - Sx + P = 0.

4. Phương trình chứa dấu giá trị tuyệt đối

Cách giải phương trình chứa ẩn trong dấu giá trị tuyệt đối là đặt các điều kiện xác định để đưa phương trình có dấu giá trị tuyệt đối thành phương trình không dấu giá trị tuyệt đối.

5. Phương trình chứa dấu căn

Đường lối chung để giải phương trình chứa ẩn dưới dấu căn là đặt điều kiện rồi lũy thừa một cách thích hợp hai vế của phương trình để làm mất dấu căn thức.